翻訳と辞書
Words near each other
・ Complete Feedback
・ Complete Fermi–Dirac integral
・ Complete field
・ Complete First Live
・ Complete First National Band Recordings
・ Complete gacha
・ Complete game
・ Complete garment knitting
・ Complete Genomics
・ Complete glucose breakdown
・ Complete graph
・ Complete Greatest Hits
・ Complete Greatest Hits (Foreigner album)
・ Complete Greatest Hits (The Cars album)
・ Complete group
Complete Heyting algebra
・ Complete History Volume One
・ Complete History Volume Two
・ Complete homogeneous symmetric polynomial
・ Complete icosahedron
・ Complete Idiot's Guides
・ Complete income reporters
・ Complete Index to World Film
・ Complete information
・ Complete intersection
・ Complete intersection ring
・ Complete Last Live
・ Complete lattice
・ Complete linkage
・ Complete Linux Installer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Complete Heyting algebra : ウィキペディア英語版
Complete Heyting algebra

In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Locales and frames form the foundation of pointless topology, which, instead of building on point-set topology, recasts the ideas of general topology in categorical terms, as statements on frames and locales.
== Definition ==
Consider a partially ordered set (''P'', ≤) that is a complete lattice. Then ''P'' is a ''complete Heyting algebra'' if any of the following equivalent conditions hold:
* ''P'' is a Heyting algebra, i.e. the operation has a right adjoint (also called the lower adjoint of a (monotone) Galois connection), for each element ''x'' of ''P''.
* For all elements ''x'' of ''P'' and all subsets ''S'' of ''P'', the following infinite distributivity law holds:
: x \wedge \bigvee_ s = \bigvee_ (x \wedge s).
* ''P'' is a distributive lattice, i.e., for all ''x'', ''y'' and ''z'' in ''P'', we have
: x \wedge ( y \vee z ) = ( x \wedge y ) \vee ( x \wedge z )
: and the meet operations are Scott continuous for all ''x'' in ''P'' (i.e., preserve the suprema of directed sets) .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Complete Heyting algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.